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On Measuring the Change in Size of
Pulmonary Nodules
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Bryan Kressler, and William J. Kostis

Abstract—The pulmonary nodule is the most common manifes-
tation of lung cancer, the most deadly of all cancers. Most small
pulmonary nodules are benign, however, and currently the growth
rate of the nodule provides for one of the most accurate noninva-
sive methods of determining malignancy. In this paper, we present
methods for measuring the change in nodule size from two com-
puted tomography image scans recorded at different times; from
this size change the growth rate may be established. The impact
of partial voxels for small nodules is evaluated and isotropic re-
sampling is shown to improve measurement accuracy. Methods for
nodule location and sizing, pleural segmentation, adaptive thresh-
olding, image registration, and knowledge-based shape matching
are presented. The latter three techniques provide for a significant
improvement in volume change measurement accuracy by con-
sidering both image scans simultaneously. Improvements in seg-
mentation are evaluated by measuring volume changes in benign
or slow growing nodules. In the analysis of 50 nodules, the vari-
ance in percent volume change was reduced from 11.54% to 9.35%
(p = 0.03) through the use of registration, adaptive thresholding,
and knowledge-based shape matching.

Index Terms—Computed tomography, growth rate estimation,
image registration, image segmentation, pulmonary nodules, rule-
based segmentation.

1. INTRODUCTION

ULMONARY nodules are approximately spherical regions

of relatively higher density that are visible in X-ray images
of the lung. The detection and measurement of pulmonary nod-
ules is important in that a nodule may be a manifestation of a ma-
lignant cancer. Large nodules, generally defined as being greater
than 1 cm in diameter, may be diagnosed by biopsy. Whereas for
smaller nodules, that are too small to biopsy, the diagnostic op-
tions are more limited. One of the most promising techniques
relies on characterizing the nodule based on its growth rate [1].
The growth rate is estimated by measuring the size of the nodule
at two points in time and then using an exponential growth rate
to model the change in size over the time period. Therefore,
for the early diagnosis of lung cancer, it is important to accu-
rately measure the change in size of pulmonary nodules from
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two time-separated computed tomography (CT) scans; in this
paper we present computer algorithms that have been designed
to perform this task.

A. Related Work

Traditional assessment of pulmonary nodules was performed
manually on chest radiographs. One of the earliest recognized
and best predictors of the likelihood of nodule malignancy was
the demonstration of growth [2], [3]. Determinations of nodule
size at two points in time can be used to determine the growth
rate, or doubling time (DT), of the nodule [4]. Developments in
computer-aided analysis of medical images eventually led to au-
tomated characterization of pulmonary nodules in chest radio-
graphs. Methods were developed that can be broadly character-
ized into three classes: detection, size and growth assessment,
and shape characterization.

While DT estimates based on the projective two-dimensional
(2-D)information contained in chestradiographs are quite useful,
it was not until the advent of computed tomography (CT) that
we could begin to characterize these lesions radiographically
in three dimensions. Not surprisingly, most of the early work in
nodule characterization from CT images was 2-D, based on single
cross sections of each lesion [5]-[8]. Some of the 2-D metrics
studied included nodule diameter, area, compactness, circularity,
location within the lung, intensity, and textural information.

With CT scans there is the possibility of three-dimensional
(3-D) image analysis; however, early CT image data was highly
anisotropic (where the slice thickness in the axial dimension was
10-20 times the size of the in-plane pixel resolution) and the
main focus was on the translation of 2-D algorithms that had
been developed for both chest radiographs and other imaging
modalities analysis [9]-[13]. In addition, much of the work on
nodule characterization had been done for the refinement of
nodule candidates in detection systems, leading to the tradition-
ally higher slice thickness needed to acquire the whole chest in a
single breath-hold [5], [10], [12], [13]. With the advent of mul-
tislice CT, it is now possible to image the entire lung volume
using 1-mm sections or thinner in a single breath-hold.

Three-dimensional volumetric analyses have been developed
for thin-slice CT data that typically involves voxels with an as-
pect ratio of less than 5. The initial focus of our research group
was on 3-D algorithms for size and growth characterization [1],
[6], [14], as growth is the parameter most associated with malig-
nancy. An interesting paper by Okada et al. describes a Gaussian
fitting method that estimates nodule volume without explicit
image segmentation [15], and other volumetric methods have
also been reported [16], [17]. However, in general, shape charac-
terization has been the major research focus in computer-aided
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diagnosis rather than growth evaluation, as classifiers based on
shape can assess the likelihood of malignancy using a single
CT scan, without waiting for a repeat examination. Work has
been done on characterization of overall shape and surface ir-
regularity [12], [13], [18]. These 3-D shape descriptors include
analogous metrics to those used in 2-D analysis (e.g., 3-D com-
pactness, sphericity), as well new metrics designed for the 3-D
domain (e.g., 3-D surface curvature analysis) [19], [20].

Recently, a number of commercial products have been re-
leased by CT vendors and others to measure pulmonary nodules
and there have been a number of studies conducted to evaluate
them. Since the actual volumes of real pulmonary nodules are
unknown, such evaluations usually involve radiologists as the
gold standard [21], [22] or involve synthetic phantoms for which
the volume is known [23]-[25].

B. CT Images of Pulmonary Nodules

The lungs are unique in that they provide high-contrast im-
ages for computer analysis where the solid structures such as
airways, blood vessels and nodules have a much higher inten-
sity than the surrounding lung parenchyma. Tumors generally
appear as solid tissue having a CT density of approximately
that of large vessels. There is a second type of lung cancer that
grows along the air-containing structures of the lung (alveoli)
and have a nonsolid appearance on CT images; these subsolid
nodules (also known as ground-glass opacities) are not consid-
ered in this paper.

Cancers are often modeled as growing at a constant rate;
therefore, an exponential growth model may be used to char-
acterize the relationship of tumor volume size over time. Tumor
growth rates are often expressed by the DT which is the time,
in days, required for a tumor to double in volume. Most lung
cancers have DTs ranging from 30 days to several hundred days
while benign nodules typically have DTs of more than 400 days.

Given two volumetric measurements of a lesion taken At
days apart, we may estimate the DT using the following expres-
sion [1]:

DT — In2- At
()

where V7 and V5 are the first and second volumetric measure-
ments respectively.

In order to minimize the time needed to assess the likeli-
hood of malignancy, we need to be able to accurately measure
the nodule volume change in two successive CT scans spaced
closely in time. In this paper, we propose algorithms to improve
the accuracy of volume change measurement, thus reducing the
time needed to assess the likelihood of malignancy of a nodule.

ey

C. Organization

In Section II, we characterize the practical image space for
nodule measurement and the significance of partial voxels, and
show that isotropic interpolation can improve measurement
accuracy. In Section III, we consider methods for accurately
segmenting a pulmonary nodule from a single CT scan that ex-
tend our earlier work on nodule measurement [14]. We describe
new methods for adaptive thresholding and for dealing with
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nodules that are attached to a large surface. In Section IV, we
develop important refinements to the basic method that take into
account variations between the different scans. The two scans
are registered together in order to more accurately determine
the change in the nodule region between them. This refined
change in volume is used to compute the growth rate. Finally,
in Section V, we describe a method based on stability of non-
malignant nodules to determine the improvement in accuracy
due to these more complex algorithms.

II. A TWO-LEVEL IMAGE MODEL FOR PULMONARY NODULES

The CT image properties of pulmonary nodules are consid-
ered in this section. The two fundamental image properties op-
tical density (image intensity), and image resolution (including
the anisotropic CT image space), are considered in turn. Shape
issues of pulmonary nodules are considered in Section III.

A pulmonary nodule may be modeled as an approximately
spherical region with a density similar to that of other solid
tissue. For CT images of the lung we consider that there are
two primary materials with very different densities: air and soft
tissue. Furthermore, we consider that the value of a CT image
voxel is determined by the ratio of these two materials within
that spatial region to which it corresponds. Voxels that repre-
sent a region containing both air and soft tissue are called par-
tial voxels and the partial volume fraction (PVF) is the fraction
of partial voxels to all voxels that are associated with an image
region.

The accuracy of volumetric size estimations made by thresh-
olding the nodule region and counting the number of voxels with
soft tissue values is inversely related to the PVF (a partial voxel
is counted if more than 50% of its area is covered by soft tissue).
Furthermore, for regions with generally smooth surfaces, the
PVF is dependent on the region size and the image resolution.
An error bound for spherical regions has been determined in
[14]. In this section, we characterize the practical bounds for
the PVF given current CT technology and a clinically signifi-
cant nodule size range. Furthermore, by using a synthetic image
model, we show that the error due to the PVF may be reduced
by supersampling the image region.

A. Two-Level Model and Partial Voxels

Fig. 1 shows a typical 12-mm pulmonary nodule. This nodule
has a size of 12 mm and the surrounding image region or nodule
region-of-interest (ROI) has dimensions of 193 x 193 x 21
voxels or 36.2 mm X 36.2 mm X 21 mm. The normalized
histogram for the whole 3-D image ROI is shown in Fig. 2.
The histogram bin size is 5 Hounsfield units (HU) and the his-
togram is plotted on a normalized scale such that the sum of all
the bins is one. The width of the two tissue distributions is at-
tributed to a combination of the PVF and the variation due to
actual tissue density variation and image noise. Also shown in
Fig. 2 are distributions of manually selected regions for both
lung parenchyma and nodule soft tissue that did not involve any
partial voxels by visual inspection. The distribution, mean =+
standard deviation (1 + o), of the lung parenchyma was found
to be —860 £ 47.8 HU and the distribution of the nodule tissue
was —14 + 43.1 HU.
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Fig. 1.
segmented image using a light shaded rendering model.
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Fig. 2. Normalized density distributions for parenchyma, solid tissue, and the
total ROI of the 12-mm nodule in Fig. 1.
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The tissue distribution characteristics can be generalized by
estimating the parenchyma and nodule density distributions
over a sample set of nodules. Five representative nodules, from
5 mm to 15 mm in size, were selected randomly from the
nodule database. A total of 17 870 nodule voxels and 51468
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(b)

(d)

Example of a 12-mm nodule. (a) Axial image through the center of the region of interest, and (b) axial, (c) sagittal, and (d) coronal views of the 3-D
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Fig. 3. Normalized density distributions for parenchyma and solid tissue of
five representative nodules.
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parenchyma voxels were manually selected for these calcu-
lations. The lung parenchyma distribution, mean + standard
deviation (p £ o), was found to be —865 + 59.7 HU, and the
nodule tissue distribution was found to be —12 £+ 43.7 HU. The
distributions for these tissue types is shown in Fig. 3.
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TABLE 1
CT IMAGE VOXEL SIZES
Case | XY-size (mm) | Z-size (mm) | Description
A 0.2 1.0 A high resolution diagnostic scan
B 0.2 0.2 Anticipated future CT scanner
C 0.6 2.5 ‘Whole lung scan on a multi-slice CT scanner

The mean value for the nodule tissue is lower than was ex-
pected from measurements on large soft tissue regions. How-
ever, we found that this was characteristic of our measurements
for small lung nodules and, furthermore, the effect was size de-
pendent. For example, the mean pixel value for the nodules of
size 10-15 mm was —8 HU while the mean pixel value for nod-
ules of size 5-10 mm was —23 HU. While there may be a signif-
icant variation in these distributions between different CT image
scans, the graph in Fig. 3 is representative of other scans that we
have studied.

B. Nodule Size Considerations

To characterize the effect of scanner reconstruction parame-
ters on nodule size measurement accuracy, three exemplar pa-
rameter sets were considered as shown in Table I. Case A in
Table I represents a typical high-resolution reconstruction that
is used to image a nodule once it has been detected. This corre-
sponds to the highest degree of focus (magnification) possible
with the CT scanner; i.e., the finest meaningful reconstruction
resolution in the  and y dimensions and the thinnest slice thick-
ness (corresponding to the detector spacing limit and beam col-
limation limit) of the CT scanner. Case B represents what may
be anticipated from a future CT scanner capable of a 0.2-mm
slice thickness capability. Such scanner parameters may be an-
ticipated in the near future for scanners that employ higher res-
olution detectors. Finally, Case C represents the resolution of
typical current multi-slice CT scanner for a whole lung scan;
The x — yresolution is limited by the need to include the whole
body cross section in an single 512 x 512 pixel image. The axial
resolution is limited by the speed of the CT scanner in achieving
a whole lung scan in a single breath-hold.

Synthetic 3-D images were created of spherical nodules cen-
tered at the origin and with a varying radius 7. The value of the
voxel V at (z, y, z) in the synthetic image was determined to be

Vi@, y,2) = (n — fip) - 0+ fip (2)

where ji,, and p, are the mean intensity values for the nodule
and parenchyma distributions determined in this section, —12
HU and —865 HU respectively, and « is the percentage of the
voxel volume at (x, ¥, z) that is within the spherical nodule of
radius r. By subdividing each voxel volume into 1000 equally
sized subvoxels, the value a can be approximated as the per-
centage of subvoxels with coordinates (z',y’, 2’) that are lo-
cated inside the spherical nodule of radius r and, thus, satisfy
the following equation:

(=) + () + () <r? 3)

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 4, APRIL 2006

1076 : : ,
0.2x0.2x1.0 ——

(a) 0.2x0.2x0.2 ===
1075 ¢ 0.6X0.6X2.5 ---eroree

104 |

1073

Number of Voxels

o] _

10M F _

100 . . . . : . .
0 2 4 6 8 10 12 14 16
Size(mm)

100 b g (‘),2){0.2).(1.0 — T
(b) 0.2x0.2x0.2 ===
0.6X0.6x2.5

60

Percent Partial Voxels

20

Size(mm)

Fig. 4. (a) Number of nodule voxels versus nodule size and (b) percent partial
voxels versus nodule size for the scanner parameters given in Table 1.

Our analysis involved nodule sizes from 2-15 mm. Nodules
smaller than 2 mm are typically too small to routinely detect
with current CT scanners. Nodules greater than 10 mm are
usually clinically significant by virtue of their size; furthermore,
they are large enough to be diagnosed by biopsy or positron
emission tomography. Such nodules may also be analyzed by
the methods considered in this paper. The number of nodule
voxels was measured by counting all the voxels with intensity
values greater than the midpoint between the mean parenchyma
and mean nodule intensity values (V' > —438.5 HU). The
number of partial voxels was measured by counting all the
voxels that were neither the full parenchyma nor the full nodule
intensity values (—865 HU < V' < —12 HU). Fig. 4(a) shows
the number of nodule voxels for the different CT scanner
parameter sets defined in Table 1. The y-axis is expressed with
a logarithmic scale to accommodate the very rapid increase
in nodule voxels with nodule size. The PVE expressed as a
percentage for each of the spherical nodule sizes is shown
in Fig. 4(b). This analysis does not consider the point spread
function of the CT scanner or other scanner artifacts which
would increase the number of partial voxels.

Two interesting observations may be made from this graph.
First, for the whole lung protocol scan where nodules are ini-
tially detected, nodules 5 mm and less in diameter have 100%
partial voxels. This means that none of the nodule voxels will
have the density of solid tissue which directly impairs the detec-
tion of such nodules. Second, the percentage of partial voxels is
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TABLE 1II
RESOLUTION PARAMETERS FOR 3-mm NODULES

Scanner Protocol

A B C
Number of voxels 352 | 2176 | 8
% partial voxels 72.1 | 40.8 | 100

Number of complete voxels | 98 1288 | 0

much lower over the size range of interest for the thinner slice
protocols. The particular case of 3-mm diameter is considered
in detail in Table II. From this table we see that for nodules in
the 3-mm size range, size measurement accuracy is highly de-
pendent on the scanner protocol used.

C. Isotropic Resampling

Current Helical CT scanners create images in an anisotropic
voxel space. We have used image resampling prior to making
nodule measurements [1] to improve measurement accuracy.
Also, in some cases, having isotropic data simplifies the imple-
mentation of image operations.

In isotropic resampling, the z-direction is resampled (super-
sampled) to at least match the resolutions in the x and y di-
mensions. In some cases, all three dimensions are resampled.
Supersampling allows additional shape information to be trans-
ferred from the grey-level image to the binary image domain.
An alternative approach would be to determine a nodule surface
function that is specified to subvoxel accuracy (possibly repre-
sented by polygonal mesh) directly from the grey-level values of
the anisotropic 3-D image. Subsequent processing, would then
be applied to the surface mesh representation. In the limit, both
the supersampled binary image and surface representation ap-
proaches should lead to similar outcomes.

The improved visual quality due to trilinear isotropic
interpolation is shown in [14]. The following experiment using
simulated spherical nodules shows that an improvement in
measurement consistency can be achieved. Synthetic images
of spherical nodule phantoms between 2.0 mm and 8.0 mm
in size with a step size of 0.2 mm were generated in a typ-
ical high-resolution CT scan resolution space (0.2 mm X
0.2 mm in-plane and 1.00-mm axial resolution). The spheres
were generated using the technique described in the Sec-
tion II-B. The images were then resampled to an isotropic space
(0.2 mm X 0.2 mm x 0.2 mm) using trilinear interpolation
[26] prior to thresholding and volume estimation. The volume
of each sphere was measured for both the resampled isotropic
image and the original anisotropic image.

A graph of the percent volume variation versus sphere size for
measurements in anisotropic and isotropic voxel-spaces using a
size increment of 0.2 mm is shown in Fig. 5. The mean percent
volume variation, shown in Table III was calculated over 1-mm
size ranges with a size increment of 0.05 mm. In general, as the
nodule size increases the percent volume variation decreases,
(i.e., the volume measurement is more consistent); this is ex-
pected due to the reduction in PVF for larger objects. Table III
shows that the mean variation is always less in isotropic space
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Fig. 5. Percent volume variation versus nodule size for measurements in
isotropic and anisotropic voxel-space.

TABLE III
MEAN PERCENT VOLUME VARIATION OF IDEAL SPHERICAL NODULES FOR
MEASUREMENTS IN ISOTROPIC AND ANISOTROPIC SPACE

Mean Percent Volume Variation
Size Range (mm) | Isotropic Anisotropic
2-3 2.380 7.080
3-4 1.368 3.772
4-5 1.017 1.941
5-6 0.390 1.301
6-7 0.386 0.929
7-8 0.351 0.651

than in anisotropic space, indicating that volume measurements
are more consistent after isotropic resampling. The difference is
greatest when measuring small nodules of sizes 2 mm to 4 mm.

In [1], an experiment was conducted to measure the variation
of volume measurements from CT images of synthetic spher-
ical phantoms. This experiment was conducted using scanner
parameters with a slightly higher 2, y resolution than our exper-
iment (0.17 mm versus 0.2 mm). After isotropic resampling, a
volume size variation of 0.7% for phantoms of size 3.96 mm was
achieved and a variation of 1.3% for phantoms of size 3.2 mm
was achieved. These results are in good agreement with the re-
sults shown for our simulation shown in Table III.

III. PULMONARY NODULE SEGMENTATION

Segmentation is the most crucial and also most challenging
step in the analysis of pulmonary nodules from CT image data.
Nodules are frequently attached to other structures, including
the local pulmonary vasculature and the pleural surface ad-
joining the thoracic wall. The geometry of such attachments
must be considered in order to successfully segment each type
of nodule. We have developed generalized geometric descrip-
tions of the nodules and the attachments, and devised methods
for the segmentation of pulmonary nodules in each of these
cases.
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Fig. 6. Segmentation system overview for (a) one nodule and (b) two nodules.

A system overview of the nodule segmentation process is pro-
vided in Fig. 6(a). A CT scan first undergoes an image prepro-
cessing stage. In this stage, an approximate location and size
of the nodule is determined from the gray level image without
segmentation. This information is used to select a region of in-
terest (ROI) around the nodule, an adaptive threshold value is
calculated, and the ROI is resampled to isotropic space using
trilinear interpolation. Next, the resampled ROI is passed to the
3-D nodule segmentation stage. A threshold is applied to pro-
duce a binary image and any attached vasculature structures or
pleural surfaces are removed from the nodule.

The following subsections will describe the nodule localiza-
tion and sizing algorithm, the adaptive threshold calculation,
the vessel removal algorithm, and the pleural surface removal
algorithm.

A. Nodule Localization and Sizing

The first step in the segmentation process is to determine
an approximate location and size of the nodule within the CT
image. This information will be used in many of the subsequent
stages of the segmentation process.

A method using template functions was developed to esti-
mate the location and size of the nodule in a region without
explicit segmentation. Using the two-level model, the nodule
is modeled as a high-intensity spherical object surrounded by a

(b)
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low-intensity background parenchyma. There may also be other
high-intensity objects, such as blood vessels or the pleural wall,
in proximity to the nodule. We define two template functions for
determining the location and size of a nodule, Lp,,-(z,y, z) and
Spr(z,y, z) respectively. The two template functions are 3-di-
mensional functions with two parameters, a center point P and
aradius r, and the response of a template function is defined as
the correlation between the function and the CT image.

The sizing template function Sp, is chosen so that it has a
fixed response 7' when the function is centered over a nodule
with radius r and center P. Similarly, the localization template
function Lp, is selected so that it has a maximum response
when the function is centered over a nodule with radius 7 and
center P. Thus, given an image of anodule, I(z, y, z), the center
P and radius r of the nodule can be determined by selecting the
appropriate values for P and r

(P,r) = aranTlaX <Z Z Z I(z,y,%) - Lpy(z,y, z))

@Y,z
“4)
with the size constraint:

ZZZI(:C'/Z/?Z) -Spr(z,y,2)=T

z,Y,2

)
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Fig. 7.

Iterations of the nodule localization and sizing algorithm for (a) an isolated nodule, and (b) a pleural nodule. The estimated location is given by a plus, and

the estimated radius is represented by the inner circle. The inner circle also represents the positive region of the LOG template function up to the first zero-crossing.
The outer circle is twice the radius of the nodule, and the region between the inner and outer circles represents the effective negative region of the LOG template

function.

Using the spherical nodule model, the theoretical value 7" can
be determined by finding the response of Sp, of radius r when
it is centered over a spherical nodule with the same radius r.

The selection of the two template functions is important
and they are chosen to fit the spherical nodule model. The
3-D Gaussian, defined in (7), is selected as the sizing template
function because it is normalized with respect to the radius
(standard deviation) and, thus, will give a fixed response when
the radius of the nodule and the parameter 7 of the Gaussian
are matched

SP,T(x7y7Z):GP,T(x7y>Z) (6)
where
GP,T($>y7Z)
1 _((x_Pr)2+(y_Py)2+(Z_PZ>2)
= 3 €Xp
r3(2m) 3 272
@)

The localization template function, as defined in (9), is the neg-
ative Laplacian of the Gaussian (LOG). This function has a pos-
itive weight close to its center and a negative weight further out,
making it useful in localizing both isolated nodules and nodules
on or near the pleural surface. The negatively weighted exte-
rior ensures that the maximum response will occur within the
nodule, especially for cases where there is a large solid adjacent
structure such as the chest wall

Lpn(w,y,2) = —LOGp;(z,y,2) ®)
1 x2 y2 22
:ﬁ<3_T—2_T_2_T_2>GP’T(x7y>Z) 9

The localization and sizing templates are applied to a high-
resolution CT image containing a focused region of the lung
containing a nodule or nodules. A seed point inside the de-
sired nodule is required as there may be multiple nodules in the
scanned region. The response of the sizing function to a nodule
of fixed radius decreases monotonically as the function param-
eter r increases. Using this property, an iterative search scheme
was developed to solve for P and r in (4) and (5). Starting at the

seed point inside the nodule and an initial radius of 1, a greedy
search is used to perform the maximization in (4) to estimate
the nodule center for the given radius. Using the new nodule
center estimate, the response to the sizing template function is
calculated. If the response is greater than 7, then the radius is
increased and the process is repeated. If the response is less than
T, then the nodule has been successfully localized and sized.

Fig. 7 shows several iterations of this algorithm on an isolated
nodule and on a pleural nodule. The nodule location estimate is
shown with a plus and the approximate radius is represented by
the inner circle. The inner circle also represents the positive re-
gion of the LOG template function up to the first zero-crossing.
The outer circle is twice the radius of the nodule, and the re-
gion between the inner and outer circles represents the effec-
tive negative region of the LOG template function. As the ra-
dius is increased, the nodule location estimate moves closer to
the true center. In these examples, the algorithm was allowed to
continue after the termination criteria was met. For the isolated
nodule in Fig. 7(a), the localization template function remains
over the center of the nodule. However with the pleural nodule
in Fig. 7(b), the response of the localization template function
has become unstable and the location estimate has moved into
the chest wall. This instability occurs when a large portion of the
localization template function begins to intersect the boundary
of the region of interest. In practice for both cases, the algo-
rithm correctly terminates at the center frame due to the size
constraint.

Using the location and size estimate of the nodule, a ROI is
selected around the nodule. The ROI is centered over the esti-
mated nodule location with each side equal to 3 times the diam-
eter of the nodule. This ROI of the nodule is used in the rest of
the segmentation process.

B. Adaptive Thresholding

The segmentation of nodule tissue from lung parenchyma
can be achieved by either a fixed gray-level threshold or by
an adaptive threshold. The threshold is selected by choosing
a value that best separates the nodule (foreground) from the
lung parenchyma (background). In the classical two-level
model the intensity histogram will have a bimodal form. The
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Fig. 8. Histogram of a real 12-mm nodule between (a) —1200 HU and 200 HU, and (b) —200 HU and 200 HU including Gaussian smoothing with (¢ = 25).

Histogram over the same ranges, (c) and (d), of a simulated 12-mm spherical nodule.

optimal threshold value that best models the transition between
parenchyma and nodule tissues may be determined as the
midpoint between the peaks of each mode. In Fig. 8(a), the
histogram of the 12-mm nodule shown in Fig. 1 is given with
the vertical lines reperesenting the two distribution peaks and
the midpoint between them.

A robust fixed threshold may be selected by computing
the mean values of lung parenchyma and solid nodule tissue
compiled over several cases. Using the mean value of lung
parenchyma and solid nodule tissue of —865 HU and —12 HU
determined in Section II-A, the fixed threshold was calculated
to be —438 HU.

A fixed threshold does not take into account the change in
lung parenchyma density due to inspiration of the lungs. In
the CT scans we studied, it was found that the density of the
parenchyma around the nodule changed on average 9.7 HU +
7.0 HU (maximum of 21 HU) between repeat scans of the same
patient. Furthermore, it was observed that the lung parenchyma
density increases toward the posterior of the lungs (with the
patient in the supine position) because of the accumulation of
blood due to gravity. In addition, a fixed threshold is not robust
to changes in attenuation values due to differences in CT scanner
calibration, X-ray dose, and other CT scan parameters.

The goal of the adaptive threshold method is to determine a
unique threshold for each scan that compensates for the vari-
ations between scans. We define the adaptive threshold for a
nodule region as the midpoint between the mean parenchyma

and the mean nodule intensity values. These mean values are ap-
proximated by finding the location of the two tissue peaks in the
histogram of the region. The histogram is calculated with a bin
size of 1 HU and is filtered with a Gaussian (o = 25) to reduce
the noise caused by the small bin size. The smoothing parameter
was determined empirically on the representative nodule data
to minimize the noise while maintaining the peak of the nodule
distribution [see Fig. 8(b)].

For smaller nodules, the lower number of nodule voxels can
cause the solid-tissue distribution peak to be obscured by noise
effects including contributions from partial voxels, scanner ar-
tifacts and from small vessels. At the limit nodule size of twice
the slice thickness, there will be no nonpartial solid voxels at all
and, therefore, no peak (this would be a size of 2 mm for the cur-
rent example of a 1-mm slice thickness). In practice, the nodule
size needs to be larger than this minimum in order to have a sta-
tistically significant number of nonpartial voxels (given also the
presence of image noise) to produce a well resolved peak value
in the histogram. The value of the nodule peak for a given size
may be predicted by using the simulated spherical nodule model
discussed in Section II. The histogram for this model is shown
in Fig. 8(c) and (d).

The histograms of representative nodules of different sizes
were examined and the minimum nodule size for the two-peak
histogram method was determined empirically to be 6 mm for
focused diagnostic scans with a 1-mm slice thickness. From
Fig. 4(b) we see that this limit occurs for a situation in which at
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least 60% of the nodules voxels contain only nodule tissue. In
cases where the solid-tissue peak value cannot be found through
the histogram, the adaptive threshold is calculated as the mid-
point between the mean parenchyma value and —12 HU, the
average solid-tissue intensity determined in Section II-A.

C. Vessel Removal Using Geometric Constraints

Once a threshold has been determined, the ROI is resampled
to isotropic space allowing geometric filters with an isotropic
kernel to be applied. The geometric filtering method we have
used for removing vessels in the ROI has been used in our earlier
studies [1] and is described in detail in [14].

D. Pleural Surface Segmentation

If the nodule is attached to the pleural surface, then the pleural
segmentation is performed after the attached vessels have been
removed from the nodule. In our earlier work, this was achieved
by morphological filtering [14]. An improved method is the
following iterative algorithm that separates a nodule from the
pleural surface using a clipping plane.

A plane A is constructed that passes through the center of
the nodule P and is normal to direction d. The vector d is the
direction toward the pleural surface from the center point P,
and is approximated as the direction from the center point P to
the center of mass of the ROI image. For almost all cases, this
approximation is valid because after vessel removal, the largest
structure in the nodule ROI is the pleural surface.

The plane A separates the image into a “cut nodule,” which
is the connected region on the negative side the plane, and the
pleural surface, which is the connected region on the positive
side of the plane. The plane is moved in direction d and at each
step the change in volume A; is calculated as

Ai=Vi=Vi (10)
where V; is the volume of the “cut nodule” at iteration ¢. With
each iteration, the change in “cut nodule” volume will be rel-
atively constant until the plane intersects the pleural wall, at
which point the change in volume will increase dramatically.
This event is manifested when the ratio in the change in volume
v, as defined in (11), is greater than a threshold v, 4

A

— 1.
AVERT

7= (11)

When the ratio v is greater than ,,,,.., a better estimate of the
optimal separation plane is calculated by reorienting the plane
A about point P to minimize the volume of the “cut nodule.”
The ratio v is recalculated and if the value is less than ¥4,
then the algorithm continues. Otherwise, the plane has reached
the pleural wall and the “cut nodule” from the previous iteration
is returned as the segmented nodule.

Fig. 9 shows a 2-D example of the algorithm. The cut nodule
is shown as dark gray while the rest of the nodule and the pleural
surface are light gray. The initial starting point and the initial
direction are shown in Fig. 9(a). Fig. 9(b) shows an iteration
where the plane does not intersect the pleural wall. Fig. 9(c)
shows an iteration where the plane intersects the pleural surface,
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Fig. 9. Two-dimensional example of the pleural-wall removal algorithm: the
cut nodule is shown as dark gray while the rest of the nodule and the pleural
surface are shown in light gray. (a) Given the initial location and direction, (b)
the plane is moved in the given direction. (c) The plane eventually intersects the
pleural wall causing an increase in the size change of the cut nodule, and (d) the
plane is reorientated to minimize the size of the cut nodule. At the next iteration,
(e) the plane intersects the pleural wall, but this time (f) reorientating the plane
to minimize the cut nodule still results in a large increase in size change. The
algorithm terminates, returning the cut nodule from the previous iteration, (d).

causing the change in the nodule size to increase. In Fig. 9(d),
the plane is reoriented to minimize the cut nodule, forming a
new direction. After another iteration, Fig. 9(e) shows the plane
intersects the pleural wall again, but reorientating the plane still
leads to a large increase in nodule size, as seen in Fig. 9(f). Thus,
the algorithm terminates and returns the cut nodule from the
previous iteration, Fig. 9(d).

An example pleural surface segmentation of a nodule is
shown in Figs. 10 and 11. A 3-D visualization of the nodule be-
fore segmentation and after segmentation is shown in Fig. 10(a)
and (b), respectively. The original axial image slices are shown
in Fig. 11(a) and (b) shows the resulting segmentation mapped
back to the anisotropic axial image space. The white voxels
represent the nodule voxels, while the gray voxels represent
pleural surface and vessels that were segmented from the
nodule.

The pleural segmentation algorithm works best when the sur-
face between the nodule and the pleural wall can be approx-
imated by a plane. Nodules on a convex surface may pose a
problem for the segmentation algorithm because the change in
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(b)

Fig. 10. Example of pleural segmentation: 3-D visualization of the nodule (a) before pleural segmentation, and (b) after segmentation.

volume when the segmentation plane intersects the pleural sur-
face may not be large enough to terminate the algorithm. There
are other situations that may cause this algorithm to not work
correctly without some assistance. In other work, Mulman [27]
showed that that for a dataset of 110 pleural nodules the unaided
algorithm produced good results for 88.7% of the cases.

IV. IMPROVING SEGMENTATION CONSISTENCY

The accuracy of the change in volume measurement is de-
pendent on the consistency of the segmentations of the nodule
in the two images. In the extreme case, a missegmentation of
one of the nodules may adversely affect the malignancy pre-
dictor by moving its measurement above or below the threshold
for malignancy.

There has been some work by Kawata et al. [28], [29] on
tracking the change of pulmonary nodules in CT images. In [28],
the pulmonary nodules are registered together using rigid-body
registration and affine registration at two different stages. The
nodules are segmented using a 3-D deformable surface model
and curvature features are calculated to track the temporal evo-
lution of the nodule. This work was extended in [29], by adding
an additional 3-D nonrigid deformable registration stage and the
analysis was performed using a displacement field to quantify
the areas of nodule growth over time.

The consistency of the nodule segmentation between two
scan times can be improved by working with both of the ROIs
of the nodule. By registering the two nodule ROIs, we can
create a common coordinate space between the regions. With
this space, it is now possible to track the change in the nodule
in specific areas, along with any inconsistencies in segmenta-
tion. These new methods can be incorporated into the existing
segmentation procedure to create a new enhanced segmentation
system.

The system overview for the segmentation of the same nodule
from two CT images is shown in Fig. 6(b). First, each CT scan
is passed through the image preprocessing stage, where an ROI
is selected, an adaptive threshold is calculated, and the region
is resampled to isotropic space. Next, the second nodule region
is registered to the first nodule so that both nodules have the
same position and orientation in image space. The two nod-
ules are then segmented using the segmentation algorithms dis-
cussed previously. Finally, a rule-based segmentation adjust-
ment algorithm is applied to both nodule segmentations. By
comparing the nodule segmentations and the thresholded re-
gions, this stage achieves a more consistent measurement of
nodule volumes by discounting missegmented nodule voxels
using a rule-based system.

The following subsections describe the method used to reg-
ister two nodules using the 3-D rigid-body transformation and
the rule-based segmentation adjustment algorithm.

A. Three-Dimensional Rigid-Body Registration

Given the resampled isotropic ROIs around two nodules, we
would like to register the second ROI to the first ROI to facilitate
a comparison between the two regions. Because the image re-
gions are of a very focused area of the lung and because the area
of interest is composed mainly of solid tissue, we assume that
the region will not stretch or skew significantly with different
levels of inspiration that may occur during the two CT scans.
Thus, the nodule is confined to translation and rotation within
the image space, and we can use a rigid-body transformation to
register the two nodules. Using a rigid-body model to register
the second nodule to the first nodule will preserve the nodule’s
volume and shape, which is desirable since this is what we wish
to measure.

The rigid-body transformation is a function of six parameters:
(tz,ty,ts, Ts, Ty, T2), OF translation in x, translation in y, trans-
lation in z, rotation about the x-axis, rotation about the y-axis,
and rotation about the z-axis, respectively. The rigid-body trans-
formation is a mapping of a point v in 3-D space to a point v’ in
transformed space defined by the following equation:

2
v = R,R,R.v+ |,

'z

12)

where I, R, and IR, are the rotation matrices.

We define the mean-squared difference (MSD) as a similarity
metric that quantifies how well two regions are registered to-
gether, and is defined as

MSD = % Y>> (B(wy,2) - Iiz.y,2)”

z,Y,z

(13)

where I; and I, are the two regions and N is the number of
voxels in 1.

The two regions are registered by conducting a search to min-
imize the MSD over the transform parameters. Powell’s method
([30] and [31]), a multi-dimensional direction-set search algo-
rithm, is used as the search strategy because it does not explicitly
use derivatives. The initial translation parameter is set to align
the center of the second nodule to the center of the first nodule
and the rotation parameters are set to zero. After the registration
is complete, the second ROI is set to have the same size as the
first ROL.
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Example of pleural segmentation: (a) slices from the original image, and (b) the nodule segmentation (white represents nodule, and gray represents

Fig. 11.
segmented pleural surface and vessels).
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Fig. 12. Example of rigid-body registration: (a) the first RO, (b) the second RO, (c) the second ROI registered to the first ROI, (d) the difference image between
the first ROI and the second ROI, (e) the difference image between the first ROI and the registered second ROI.

An example of rigid-body registration on two nodules is
shown in Fig. 12. Mid-nodule image slices for the first ROI and
the second ROI are shown in Fig. 12(a) and (b), respectively.
The registered mid-image is seen in Fig. 12(c). Fig. 12(d) shows
the difference image between the first ROI and the second ROI.
The difference image shows that the vessels at the top of the
image and on the right of the image are not aligned properly.
The circular white ring is the growth of the nodule between the
two scan times. Fig. 12(e) shows the difference image between
the first ROI and the registered second ROI. The vessels are
less visible in the second difference image than in the first
difference image, meaning that with the registered image the
vessels and nodule are aligned better than without registration.

In some cases, the movement of large periphery structures
such as vessels or pleural surfaces relative to the nodule may
cause misregistration of the nodule. Because the MSD metric
equally weighs the alignment of all parts of the image, the larger
structure will be registered at the expense of mis-aligning the
smaller nodule. This occurs frequently when registering nodules

with a pleural tail (slight attachments to the pleural surface) be-
cause differences in lung inspiration may cause the pleural sur-
face to move dramatically relative to the nodule.

A Gaussian-weighted MSD metric can be used to improve
registration of nodules with large periphery structures, and is
defined as

1 e —2)2+(g,—y)2+(g:—2)?
MSDQZWZZZGXI’(@ )’ +(g 29;/) +(g:—2) ))

Y,z

x(I2(x,y,z)— T (z,y, z))2 (14)
where (g., gy, g-) is the center of the nodule and g,. is the radius
of the nodule as determined by the sizing and localization algo-
rithm in Section III-A. An appropriately sized Gaussian func-
tion will weigh the alignment of the nodule over the alignment
of any of the periphery structures, while still using the attached
structures to contribute to the registration of the nodule.

A comparison of registration metrics on a benign pleural-tail
nodule is shown in Fig. 13. For a benign nodule, a good nodule
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(b)

Fig. 13. Comparison of registration metrics on a pleural-tail benign nodule: given the benign nodule in (a) and (b), the second nodule is registered to the first
using the MSD metric (c). The difference image (d) shows that the images are misregistered. The second nodule is registered using the Gaussian-weighted MSD
(e). The difference image (f) shows that the nodule is registered correctly, even though the high-intensity bone is not.

registration will show little change around the nodule in the dif-
ference image. A mid-nodule slice from the original scans is
shown in Fig. 13(a) and (b). The second nodule is registered to
the first nodule using the MSD metric, and the resulting image
is shown in Fig. 13(c). The difference image between the reg-
istered image and the first nodule, seen in Fig. 13(d), shows
that the nodules are badly misregistered. In contrast, the second
nodule is registered using the Gaussian-weighted MSD metric
and is shown in Fig. 13(e). In the difference image shown in
Fig. 13(f), we see that the nodule has been correctly registered
even though the high-intensity bone has not.

B. Rule-Based Segmentation Adjustment

After the registration is complete the two nodules are then
segmented using the methods described in the previous section.
If the nodule registration is good then it is possible to make a

correspondence between the voxels from the first region to the
voxels in the second region. This is a powerful tool in that now
we are able to track the nodule region over a time interval with
voxel accuracy.

By comparing the corresponding voxels between the seg-
mented nodules and the thresholded images, it is possible
to label the voxels in the segmented nodules as nodule re-
peat voxels, nodule growth voxels, nodule atrophy voxels,
or missegmented voxels. Using this knowledge, the nodule
segmentations are adjusted by removing the missegmented
voxels. This improves the consistency of the segmentations
of the nodule in the two different times, thus improving the
accuracy of the volume measurements.

Let S be the segmented nodule from the first image (time 1)
and 77 be the threshold image of the first image (before vessel
or pleural surface removal). Likewise, let So be the segmented
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Fig. 14. Nodule segmentation adjustment: given two thresholded nodule regions, T1 and T2, each ROI is segmented to produce S1 and S2 respectively. Active
voxels in S1 are compared with voxels in S2 and T2 to mark regions as (a) nodule in time 1, (b) nodule atrophy, or (c) missegmentation in S1. Active voxels in
S2 are compared with voxels in S1 and T1 to mark regions as (d) nodule in time 2, (e) nodule growth, or (f) missegmentation in S2. The missegmented voxels are

removed resulting in the adjusted nodule segmentations N1 and N2.

nodule from the second image (time 2) and 75 be the thresh-
olded second image. A rule-based system is used to mark active
voxels in the segmented nodule S; as repeat nodule, nodule at-
rophy, or nodule missegmentation. If an active voxel in the seg-
mented nodule of time 1 corresponds to an active voxel in the
segmented nodule of time 2, then that voxel is a repeat nodule
voxel because it is present as a nodule in both times. If an active
voxel in the segmented nodule of time 1 corresponds to an in-
active voxel in the segmented nodule and the thresholded image
of time 2, then that voxel is a nodule atrophy voxel because it is
present in the first nodule, but disappeared in the second image.
Finally, if an active voxel in the segmented nodule of time 1 cor-
responds to an inactive voxel in the segmented nodule of time
2 and an active voxel in the thresholded region of time 2, then
that voxel is a missegmented nodule voxel in time 1 because it
was marked as a nodule voxel in time 1 but was also marked as
a nonnodule object (vessel or chest wall) in time 2.

An active voxel in the segmented nodule S, may be marked
as a repeat nodule voxel, a nodule growth voxel, or a nodule
missegmented voxel by using a similar set of rules. A summary
of the rules for marking a region in S; or Ss are given below.

* (A) Repeat Voxel in Time 1: Ry = S1 A So;

* (B) Atrophy Voxel in Time 1: Ay = S1 A (T2)';

* (C)Missegmented Voxel in Time 1: My = S1A(S2) ATy;

* (D) Repeat Voxel in Time 2: Ry = Sa A Sy;

* (E) Growth Voxel in Time 2: G5 = So A (T1)';

» (F)Missegmented Voxel in Time 2: My = SoA(S1) AT7y;
where A is the AND operation between binary images, and (X )’
is the complement of the binary image X .

Fig. 14 illustrates an example of the segmentation adjustment
on a registered vascularized nodule. The thresholded nodule at
two different times is shown in Fig. 14(a) and (b), and the seg-
mented nodules are shown in Fig. 14(c) and (d). In the first
segmentation, part of the top attached vessel has been misseg-
mented as part of the nodule, and in the second segmentation,
part of the bottom attached vessel has been missegmented as
part of the second nodule. By using the rules described above,
the regions of each segmentation are marked in Fig. 14(e) and
(f) as (A) nodule in time 1, (B) nodule atrophy, (C) nodule mis-
segmentation in time 1, (D) nodule in time 2, (E) nodule growth,

or (F) nodule missegmentation in time 2. Finally, the segmen-
tations of both nodules are adjusted in Fig. 14(g) and (h) by
removing the missegmented regions (C) and (F). The volumes
of the nodules in the adjusted segmentations are more accu-
rate than the volumes in the original segmentations because the
vessel attachments have been removed. This leads to a more ac-
curate determination of DT or percent volume change (PVC).
Furthermore, regions of growth and atrophy of the nodule can
be examined over time.

Fig. 15 shows an example of the rule-based segmentation ad-
justment on a real nodule. The two nodule regions I1 and 12 are
thresholded (T1 and T2) and segmented (S1 and S2). The vessel
in S1 was removed correctly, however part of the vessel adja-
cent in S2 has not been successfully segmented from the nodule.
Using segmentation adjustment the voxels of the missegmented
vessel and the voxels with nodule growth can be identified. As-
suming that the two nodule images are registered correctly, the
rule-based segmentation adjustment will correct the nodule seg-
mentation if the nodule feature is properly segmented in one of
the images. If a nodule feature is missegmented in both images,
then no segmentation adjustment will take place; however, in
this case, the missegmentation does not greatly affect the change
in volume calculation because the missegmented feature will ap-
pear to be a stable part of the nodule.

V. CONSISTENCY VALIDATION THROUGH ANALYSIS OF
BENIGN NODULES

We have developed several segmentation systems to measure
the change in volume of a nodule. We would like to compare
the consistency of each system to determine if using the new
algorithms are better than before. A consistent algorithm is de-
fined as an algorithm that is capable of measuring the change in
volume of a nodule with minimal measurement error.

One method of validating consistency is to use CT scans
of phantom nodules. Using phantom nodules is advantageous
because the growth rate between repeat scans is zero, making
for straightforward calculations of measurement error. How-
ever, these phantom nodules are usually simple spheres with no
surface features and little or no nodule attachments, but, more
importantly, they are only a rough approximation to real in vivo
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Fig. 15. Example of segmentation adjustment: in regions I1 and I2, a nodule has grown against the adjacent vessel. The two nodule regions I1 and I2 are
thresholded (T1 and T2) and segmented (S1 and S2). The vessel in S1 was removed correctly, however part of the vessel adjacent in S2 has not been successfully
segmented from the nodule. Using segmentation adjustment the missegmented vessel voxels and the voxels with nodule growth can be identified.

lung nodules. Our algorithms were designed to counter seg-
mentation inconsistencies of nodules with surface features and
major attachments. Therefore, little advantage is gained when
using our algorithms on phantom nodules with simple surface
features and no attachments.

For the comparison of algorithms, we desire a data set con-
sisting of real pulmonary nodules showing little growth between
repeat scans. Same-day repeat scans of a nodule would be ideal.
However, these repeat scans are usually not available since lung
cancer screening protocols are designed to minimize radiation
exposure of patients. Given the above constraints, we devised an
experiment to evaluate the accuracy of the growth measurement
methods based on nodules that were observed to be stable rather
than growing at the classical rapid exponential growth curve as-
sociated with malignant nodules. We selected a data set con-
sisting of nodules that have been observed to have no significant
growth for a period of two years. Next we will show how sta-
tistical methods can be used to quantitatively compare volume
change measurements from different segmentation algorithms.

A measurement of the change in the volume of a stable nodule
is a result of the combination of the actual nodule size change
and the measurement error. Consider a data set consisting of
N nodules, each with two scans, and a segmentation algorithm
that measures the size of a nodule in each of the two scans.
The actual growth of the nodule and the error in the growth
measurement is modeled as two independent random variables,
A and F, respectively. The actual growth of the nodules has a
mean of /1, and a variance of o2. The measurement error can be
modeled as a Gaussian with mean . and variance o2

E ~ N (pe,0?) . (15)

The growth measured by the algorithm is the combination of the

actual nodule growth and the measurement error
M=A+E. (16)

Since A and E are independent random variables, the mean gy,
and variance o2, of the measured growth can be expressed as

a7
(18)

Hm = fa + He

2 _ 2 2
O, =0, + 0.

Therefore, the variance of the measured growth of the N nodules
in the data set is equal to the sum of the variance due to any
change in nodule sizes and the variance of the measurement
error.

The actual growth distribution is fixed with the selection of
the data set. For a given data set, a change in the measured
growth between two segmentation algorithms is caused solely
by a change in the measurement error. The most accurate algo-
rithm will on average have a lower measurement error, which
will result in a reduction of variance in the measured growth
distribution. Therefore, different segmentation algorithms can
be quantitatively compared for accuracy using the variance (or
standard deviation) of the growth measurement over a fixed pop-
ulation of nodules. While there may be systematic errors in the
volume measurements of the nodules which are not apparent
in the variance measurements, consistency in volume measure-
ment between scans is of greater concern than absolute accuracy
because growth is being measured rather than absolute volume.

An experiment was performed to validate the benefits of using
adaptive thresholding and rule-based adjustment over the fixed
threshold segmentation algorithm. Stable nodules with repeat
scans were selected for the experiment.

A. Growth Validation Method and Materials

Fifty stable nodules, either diagnosed as benign through
biopsy or observed to have little growth over a period of two
years (2-year-no-change or 2YNC nodules), were selected
from the Cornell screening databases Each nodule has two
high-resolution CT scans with an axial resolution of 1.00 mm
and an in-plane resolution of 0.1875 mm. The scans were
obtained with a GE Medical Systems HiSpeed CT scanner with
a tube current between 200 mA to 330 mA and a peak voltage
of 120 kV to 130 kV. Although the nodules were tracked over
two years, the repeat scans were selected such that the interval
between scans was the shortest possible given the screening
protocol.

Of the 50 nodules, 33 were 2-5 mm nodules, 15 were 5-9
mm nodules, and 2 were larger than 10 mm. The average nodule
size was 4.4 mm. Ten nodules had repeat scans within 100 days,
while 13 had repeat scans between 100 and 200 days, 11 had
repeat scans between 200 and 300 days, 12 had repeat scans
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TABLE IV
NODULE DATABASE POPULATION: SIZE AND TIME BETWEEN SCANS
FOR STABLE NODULES

Size (mm) || Number Time Between Scans (days) || Number
2-4 33 0-100 10
5-9 15 100 - 200 13
10+ 2 200 - 300 11
Total 50 300 - 400 12

400+ 4

between 300 and 400 days, and 4 had repeat scans over 400
days. The average separation time between repeat scans was 230
days. Table IV shows the breakdown of the nodule population
by size and time between scans.

A seed point in each CT scan was selected by hand for each
nodule case. Four variations of the proposed segmentation algo-
rithm were applied to each nodule pair, as listed below:

1) segmentation using a fixed threshold;

2) segmentation using a fixed threshold and rule-based ad-

justment;

3) segmentation using an adaptive threshold;

4) segmentation using an adaptive threshold and rule-based

adjustment.
Each segmentation method was compared quantitatively by
analyzing the variation of the nodule volume change for each
method.

The experiment was run on a 1.5 GHz Pentium 4 with 256 MB
RAM using unoptimized research programs. The computation
time for a nodule segmentation varies with the size of the nodule.
For a 12-mm nodule, the segmentation took 1.5 minutes for the
nodule in the first scan and 4 minutes for the nodule in the repeat
scan. The segmentation for the repeat scan is slower because
rigid-body registration is used. In general, smaller nodules will
take less time and larger nodules will take more time.

B. Growth Validation Results

The experiment was run on the 50 nodules and the resulting
segmentations were visually inspected for any gross misseg-
mentations, such as failure of the pleural removal algorithm. In
the case of a gross missegmentation, the appropriate segmenta-
tion parameter was adjusted and the nodule was resegmented.

Traditionally, the DT is used as the measurement of growth
rate of pulmonary nodules. However, our experiment was con-
cerned with the amount of measured growth regardless of the
time between repeat CT scans. To compare the different seg-
mentation techniques we first evaluated the volume change mea-
sured for each nodule. A significant (P = 0.03) decrease was
seen for the standard deviation of the rule-based adjustment
with an adaptive threshold (¢ = 29.15) compared to the fixed
threshold method (o = 38.2).

For discussion, the PVC was selected as the change metric
as it is a normalized measurement that relates to measurement
accuracy independent of the nodule size. The PVC is defined as

V=N

P =100-
Vi

19)
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TABLE V
STANDARD DEVIATION OF THE PERCENT VOLUME CHANGE FOR FOUR
SEGMENTATION TECHNIQUES

Segmentation Technique All Nodules 5 mm 5 mm
Fixed Threshold Segmentation 11.54 8.66 15.69
w/ Rule-Based Adjustment 9.68 7.77 12.58
Adaptive Threshold Segmentation 11.07 7.95 15.39
w/ Rule-Based Adjustment 9.35 7.44 12.22

where V] and V5 are the nodule volumes measured from the time
one and time two nodule segmentations, respectively. The stan-
dard deviation of the PVC for the 50 nodule pairs was calculated
for each segmentation technique and appears in Table V.

For the 50 nodules, the fixed threshold segmentation pro-
duced a PVC standard deviation of 11.54, while using rule-
based adjustment produced a lower standard deviation of 9.68.
Using an adaptive threshold lowered the standard deviation to
11.07, only slightly better than that using a fixed threshold.
Using rule-based adjustment with an adaptive threshold pro-
duced the lowest standard deviation of 9.35.

The nodules were split into two groups, nodules less than
5 mm in size and nodules greater or equal to 5 mm in size.
Rule-based adjustment has a greater impact when the nodules
are greater than 5 mm. This happens because larger nodules
are more likely to have spicules or significant attachments to
vessel structures; therefore, the rule-based adjustment will have
a greater affect on the segmentation correction.

For many of the nodules, using the advanced segmentation
techniques produced a small improvement. This is because these
were nodules without any significant attachments. On the other
hand, nodules that showed a large decrease in variation had sig-
nificant vessel or pleural attachments. Rule-based adjustment is
most effective in improving the segmentation consistency when
there are significant attachments.

VI. CONCLUSION

The measurement of the growth rate of pulmonary nodules
is a very good predictor of malignancy. In this paper, we have
presented techniques to improve the accuracy in growth mea-
surement from CT images.

Accurate and robust nodule growth measurement is decep-
tively challenging both to implement and to validate. However,
accurate measurements and knowledge of the accuracy of these
measurements are critical to the optimal use of growth mea-
surement for the diagnosis of cancer. Measurement accuracy de-
pends upon many factors including the nodule size, its location
with respect to other objects, and the CT scanner parameters, the
foremost of which is reconstruction resolution. A second chal-
lenge is to acquire two CT scans with exactly the same scanner
parameters which can be quite difficult in clinical practice.

Methods have been presented that match two images by
density (adaptive thresholding), by location (registration), and
by vessel removal consistency (rule-based segmentation). A
significant improvement in growth rate measurement accuracy
was achieved by using these methods together compared to
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the more standard approach of measuring each nodule image
individually.

Measurement evaluation is typically performed either by
using calibrated phantoms that may not accurately model
real nodules or by radiologists subjective evaluations of real
nodules for which the accuracy and bias is unknown. Using
stable nodules for growth evaluation is a first step involving
real nodules that is freer (less biased) than using conventional
radiologist measurements as a gold standard. We have achieved
promising results with 50 stable nodules; however, more data
is necessary to validate the methods for use in a clinical setting.
Furthermore a better, more complete, evaluation will require
the measurement of growing nodules with well established
growth rates in addition to the stable nodules.
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